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Berkeley-ISICLES (BISICLES) 

 DOE ISICLES-funded project to develop a scalable adaptive mesh 

refinement (AMR) ice sheet model/dycore 

 Local refinement of computational mesh to improve accuracy 

 Use Chombo AMR framework to support block-structured AMR 

 Support for AMR discretizations 

 Scalable solvers 

 Developed at LBNL 

 DOE ASCR supported (FASTMath) 

 Interface to CISM (and CESM) as an  

      alternate dycore 

 Collaboration with LANL and Bristol (U.K.) 

 Continuation in SciDAC-funded PISCEES effort 

 

 



Why is this useful? (another BISICLE for another fish?) 

 Ice sheets -- Localized regions where 

high resolution needed to accurately 

resolve ice-sheet dynamics (500 m or 

better at grounding lines) 

 Antarctica is really big – too big to 

resolve at that level of resolution. 

 Large regions where such fine 

resolution is unnecessary (e.g. East 

Antarctica) 

 Well-suited for adaptive mesh 

refinement (AMR) 

 Problems still large: need good 

parallel efficiency 

 Dominated by nonlinear coupled 

elliptic system for ice velocity solve: 

good linear and nonlinear solvers  

 

 

 

 

Rignot et al., Science, 333 (2011) 



“L1L2” Model (Schoof and Hindmarsh, 2010). 

 Uses asymptotic structure of full Stokes system to construct a 

higher-order approximation  

 Expansion in = 
𝐻

𝐿
 and l= 

𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
 (ratio of shear & normal stresses) 

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Computing velocity to 𝑂(𝜀2) only requires τ to 𝑂(𝜀) 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 

 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Can construct a computationally efficient scheme: 

 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

 



Temporal Stability 

Update equation for H:  
𝜕𝐻

𝜕𝑡
+  𝛻 ∙ 𝑢𝐻 = 𝑆 

 “looks” like hyperbolic advection equation (explicit scheme, 

Courant stability -- ∆𝑡 ∝  ∆𝑥) 

 Velocity field has 𝛻𝐻 piece – diffusion equation for H (∆𝑡 ∝  ∆𝑥2!) 

 

 Strategy (Cornford) – try to factor out diffusive flux and 

discretize as an advection-diffusion equation: 

 𝐹 =  𝑢𝐻 =  𝐹 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 + 𝐹 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 

 𝐹 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 = −𝐷 𝛻𝐻 

 Now solve: 
𝜕𝐻

𝜕𝑡
+  𝛻 ∙ 𝐹 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 =  𝛻 ∙ (𝐷 𝛻𝐻) + 𝑆 

 Advective fluxes: explicit update using unsplit 2nd Order PPM scheme 

 Diffusive fluxes: implicit update (Backward Euler for now) 

 

 



Temporal Stability (cont) 

 Test case based on ISMIP-HOM A geometry 

 ∆𝑥 = 2.5 𝑘𝑚, ∆𝑡𝐶𝐹𝐿 = 5 a 

 

 

 

 

 

 

 

 

 

 

 

 Unfortunately, still run into stability issues finer than ∆𝒙 < 𝟎. 𝟓 𝒌𝒎! 

 

Explicit advance Semi-implicit advance 



Modified “L1L2” Model (SSA*) 

 Use this result to construct a computationally efficient scheme: 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

4. Use  𝑢(𝑥, 𝑦, 𝑧) = 𝑢 𝑧=𝑏(𝑥, 𝑦)  (neglect vertical shear in flux velocity) 

 

 

 



BISICLES Results - MISMIP3D 

 Begin with steady-state (equilibrium) 

grounding line. 

 Add Gaussian slippery spot perturbation 

at center of grounding line 

 Ice velocity increases, GL advances. 

 After 100 years, remove perturbation. 

 Grounding line should return to original 

steady state. 

 Figures show AMR calculation:  

 ∆𝑥0= 6.5𝑘𝑚 base mesh,  

 5 levels of refinement 

 Finest mesh ∆𝑥4= 0.195𝑘𝑚. 

 t = 0, 1, 50, 101, 120, 200 yr 

 Boxes show patches of refined mesh. 

 GL positions match Elmer (full-Stokes) 

 

Experiment P75R:   
(Pattyn et al (2011) 



MISMIP3D (cont): L1L2 (SSA*) Spatial Resolution 

• Very fine (~200 m) resolution needed to achieve reversability! 

 



MISMIP3D: SSA vs. “L1L2” or “SSA*” 

• Direct comparison of SSA vs. SSA*  
• (fully resolved spatially, same numerics, etc) 

• Note difference in steady-state GL positions 



Simple Rheology/Damage model 

Pine Island Glacier Filchner-Ronne Ice Shelf Ross Ice Shelf 

• Solve control problem for ice initial condition 

• Include new parameter 𝜑 which multiplies viscosity 

• 𝜑 < 1 (blue) = softening 

• 𝜑 > 1 (red) = hardening 

 



BISICLES Results – Ice2Sea Amundsen Sea 

 Study of effects of warm-water incursion into Amundsen Sea. 

 Results from Payne et al, (2012), submitted.  

 Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction 

and damage coefficients to match Joughin 2010 velocity. 

 Background SMB and basal melt rate chosen for initial equilibrium. 

 SMB held fixed. 

 Perturbations in the form of additional subshelf melting:  

 derived from FESOM circumpolar deep water  

 ~5 m/a in 21st Century,   

 ~25 m/a in 22nd Century.  



Ice2Sea Amundsen (cont) 



Ice2Sea Amundsen (cont) 

 

 Need at least 2 km 

resolution to get any 

measurable 

contribution to SLR. 

 

 Appears to converge at 

first-order in ∆x 

SLR vs. year, Amundsen 
Sea Sector 



Ice2Sea Amundsen (cont) – Thwaites? 

• In 400 year run, Thwaites 

destabilizes as well. 

 

• Same forcing as previous 

run, subshelf melting held 

constant past 2200. 

 

• As discussed by Alley and 

Parizek (Tuesday morning), 

Thwaites is very stable, 

until it tips. 

 

 



Antarctica (Ice2Sea)  

• Refinement based on Laplacian(velocity), grounding lines 

• 5 km base mesh with 3 levels of refinement  

• base level (5 km): 409,600 cells (100% of domain) 

• level 1 (2.5 km):  370,112 cells (22.5% of domain) 

• Level 2 (1.25 km): 955,072 cells (14.6% of domain) 

• Level 3 (625 m):  2,065,536 cells (7.88% of domain) 

 

 

 

 

 

 



Embedded Boundary (EB) for Grounding Lines 

 Embedded Boundary (EBChombo) 

• Currently force GL and ice margins to cell faces 

 

• “Stair-step” discretization  

Known to be inadequate from experience with  

Stefan Problem in other contexts! 

 

• Use Chombo Embedded-boundary support to  

improve discretization of GL’s and ice margins. 

 

• Can solve as a Stefan Problem, with appropriate 

jump conditions enforced at grounding line.  

(as in Schoof, 2007)  

 

 

 

 



Conclusions 

 Fine (sub 1-km) resolution required to get grounding lines right 

 

 AMR is a natural fit for this problem 

 

 Split advective/diffusive approach to temporal evolution looked 

promising, but was eventually insufficient. 

 

 “SSA*” modified L1L2 approach improves temporal stability, 

appears to be “good enough” for grounding lines and fast-flowing 

ice streams and shelves. 

 

 Embedded boundary approach is promising 
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Extras 





BISICLES – Next steps 

 More work with linear and nonlinear velocity solves. 

 PETSc/AMG linear solvers look promising (in progress) 

 Revisit semi-implicit time-discretization for stability, accuracy. 

 Finish coupling with existing Glimmer-CISM code and CESM 

 Full-Stokes for grounding lines? 

 Embedded-boundary discretizations for GL’s and margins. 

 Performance/scaling optimization and autotuning.  

 Refinement in time? 



Parallel scaling, Antarctica benchmark 

(Preliminary scaling result – includes I/O and serialized initialization) 



MISMIP3D: Mesh resolution 

 Plot shows grounding line 

position 𝑥𝐺𝐿 at 𝑦 = 50𝑘𝑚 vs. 

time for different spatial 

resolutions. 

 

 ∆𝒙 = 𝟎. 𝟏𝟗𝟓𝒌𝒎 → 𝟔. 𝟐𝟓 𝒌𝒎 

 

 Appears to require finer than 

1 km mesh to resolve 

dynamics 

 

 Converges as O(∆𝑥)            
(as expected) 



BISICLES: Models and Approximations  

Physics: Non-Newtonian viscous flow: 𝜇(𝜖2 ,T) = A(T)(𝜖2 )
(1−𝑛)

2  

 Full-Stokes  

 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 

 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 = [ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 

 “Shallow Ice” and “Shallow-Shelf” approximations (accurate to O(𝜀) ) 

 Special case of approximate Stokes with 2D equation set 

 Easiest to work with computationally, generally less accurate 

 

 

 

     



Block-Structured Local Refinement 

 Refined regions are organized into rectangular 

patches. 

 

 

 

 

 

 

 

 

 Algorithmic advantages: 

 Build on mature structured-grid discretization 

methods. 

 Low overhead due to irregular data structures, 

relative to single structured-grid algorithm. 



Linear Solvers – GAMG vs. Geometric MG 



BISICLES Results – Pine Island Glacier  

 Cornford, et al, JCP (2011, submitted) 

 PIG configuration from LeBrocq: 
 Bathymetry:  combined Timmerman (2010), Jenkins (2010), Nitsche (2007) 

 AGASEA thickness 

 Isothermal ice, A=4.0× 10−17 𝑃𝑎−
1

3 𝑚−1/3𝑎  

 Basal friction chosen to roughly agree with Joughin (2010) velocities 

 Specify melt rate under shelf: 

 𝑀𝑠 =  

0                      𝐻 < 50𝑚
1

9
𝐻 − 50          50 ≤ 𝐻 ≤ 500𝑚 

                     50                       𝐻 > 500 𝑚                       

 m/a 

 Constant surface flux = 0.3 m/a 

 Evolve problem – refined meshes follow the grounding line. 

 Calving model and marine boundary condition at calving front 

 



PIG (cont) 



PIG, cont 

Coloring is ice velocity, 𝛤𝑔𝑙 is the grounding line. Superscripts denote number 

of refinements. Note resolution-dependence of 𝛤𝑔𝑙 

Initial Condition Solution after 30 years 



Amundsen Sea Sector 

• Regional Model 

• Heavy subshelf melting drives 

retreat (up to 100 m/a) 

• Melt rate function of depth 

(strongest melting near GL) 

• 4 km base mesh  

• 3 levels of refinement  

(2km, 1km, 500m) 

• Courtesy of Steph Cornford 

 

 



Filchner-Ronne/Ross 

• Light melting (< 5 m/a) 

• 5 km base resolution  

• 2 refinement levels  

(2.5km, 1.25km)  

• “few hours” for 32 processors 

to evolve for 50 yrs 

• Courtesy of Steph Cornford 

•   



Interface with Glimmer-CISM  

 Glimmer-CISM has coupler to CESM, additional physics 

 Well-documented and widely accepted 

 Our approach – couple to Glimmer-CISM code as an 

alternate “dynamical core” 

 Allows leveraging existing Glimmer-CISM capabilities  

 Use the same coupler to CESM 

 BISICLES code sets up within Glimmer-CISM and maintains its 

own storage, etc. 

 Communicates through defined interface layer 

 Instant access to a wide variety of test problems 

 Interface development almost complete  

 Part of larger alternative “dycore” discussion for Glimmer-CISM 



Models and Approximations  

 Full-Stokes  
 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 
 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 =  
[ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 
 Special case of approximate Stokes with 2D equation set (“Shelfy-stream”) 

 Easiest to work with computationally 

 Generally less accurate 

 

 

     



“L1L2” Model (Schoof and Hindmarsh, 2010) 

 Asymptotic expansion in 2 flow parameters: 

  -- ratio of length scales 
ℎ

𝑥
  

l – ratio of shear to normal stresses 
𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
  

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Blatter-Pattyn approximates full-Stokes to 𝑂 𝜀2  for all l regimes 

 

 Asymptotic expansion: (e.g. 𝑢 𝑥, 𝑧 =  𝑢0 + 𝜀𝑢1 + 𝑂(𝜀2) ) 

 Leading order velocity term:  𝑢0 = 𝑢0(𝑥)  (no vertical dependence) 

 Don’t need shear stresses to 𝑂 𝜀2  to compute velocity to 𝑂 𝜀2  

 Provides basis for depth-integrated approach 

 



“L1L2” Model (Schoof and Hindmarsh, 2010). 

 Uses asymptotic structure of full Stokes system to construct a 

higher-order approximation  

 Expansion in  -- ratio of length scales 
ℎ

𝑥
 

 Computing velocity to 𝑂(𝜀2) only requires τ to 𝑂(𝜀) 

 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 

 



BISICLES results – Grounding line study 

 Bedrock topography based on Katz and 

Worster (2010) 

 Evolve initially uniform-thickness ice to 

steady state 

 Repeatedly add refinement and evolve 

to steady state 

 G.L. advances with finer resolution 

 Appear to need better than 1 km 

 



Discretizations 

 Baseline model is the one used in  

Glimmer-CISM: 

 Logically-rectangular grid, obtained 

from a time-dependent uniform 

mapping. 

 2D equation for ice thickness, coupled with 

2D steady elliptic equation for the horizontal 

velocity components. The vertical velocity is 

obtained from the assumption of 

incompressibility. 

 Advection-diffusion equation for temperature. 
 

 Use of Finite-volume discretizations (vs. Finite-difference discretizations) 

simplifies implementation of local refinement. 

 Software implementation based on constructing and extending existing solvers 

using the Chombo libraries. 
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Nonlinear Solvers 

 Most computational effort spent in nonlinear ice 

velocity solve. 

 Picard iteration:  

• Robust 

• Simple to implement 

• Slow (but steady) convergence 

 Jacobian-free Newton-Krylov (JFNK): 

• More complex to implement 

• Works best with decent initial guess 

• Rapid convergence 

• Well-suited for Chombo AMR elliptic solvers 

  Approach – use Picard iteration initially, then switch to 

JFNK when convergence slows 

 

 

 

 

 

 



Nonlinear Solvers (cont) 



 Ice-stream Simulation 

[based on Pattyn et al (2008)]: 

 High resolution is required to 

accurately resolve the ice stream. 

 AMR simulation allows high 

resolution around the ice stream 

at a fraction of the cost of a 

uniformly refined mesh. 

 

 

BISICLES Results 



Numerical Accuracy and Convergence 



Continental-scale: Antarctica 

• Ice2sea geometry 

• Temperature field from Pattyn and Gladstone 


